Graphing and interpreting errors in Budget Forecasting

Part 1: Budget forecasting errors over time

Errors in Budget forecasting are often represented as a percentage of the total economic output of a country, or gross domestic product (GDP). This is a more realistic measure of the size of a Budget forecasting error as it is relative to the size of an economy. The errors in Budget forecasting represented as a percentage of GDP are shown in the table below.

Errors for One-Year Forecasts, as a Percentage of GDP, 2011-2022

Year ending 30 June	Budget outcome as \% of GDP	Error in forecasts as \% of GDP
2011	-3.3	-0.4
2012	-2.9	-1.4
2013	-1.2	-1.3
2014	-3.0	-1.9
2015	-2.3	-0.5
2016	-2.4	-0.3
2017	-1.9	0.3
2018	-0.6	1
2019	0.0	-0.8
2020	-4.3	-4.7
2021	-6.5	4.5
2022	-1.4	3.6

1 Graph the Budget outcomes and errors in percentage forecasts for the period between 2010-2022 on one chart.
2 What type of graph did you select to use?
3 Why did you choose this type of graph?
4 Interpret the graph and write a paragraph describing your interpretation using the following framework.

Framework for interpreting graphs

Introduction

Trend 1
Additional trends
Anomolies or differences

- Repeat the above for any additional patterns, trends or relationships.

> Describe what the graph shows.
> -This graph shows ...' Identify and list any general patterns, trends or relationships.
> - Describe the first pattern or trend.
> Provide evidence from the graph to support the pattern, trend or relationship.

- Describe any anomalies or different data points.
- Provide evidence from the graph.

Part 2 - Distribution of Budget forecasting errors

1 Open a spreadsheet and put the percentage errors in a table with the following headings.

	Percentage error
	1.4
	-0.4
etc.	
Average (mean)	
Median	

2 Use the SORT function to sort the percentage errors from lowest to highest.
3 Set up formulas to calculate the average (mean) and another to calculate the median.
41 What is the average percentage error? What is the median percentage error?
5 Are these figures similar? Which one is higher and why?
6 On the same spreadsheet (you should have a bit of space to the right of your first table) set up another table like this:

Category	Number of emors in this category
-5 to -4	
-4 to -3	
-3 to -2	
-2 to -1	
-1 to 0	
0 to 1	
1 to 2	
2 to 3	
3 to 4	
4 to 5	
Total	

7 Count the number of percentage errors in each category and add this information to the table. The -2 to -1 range has been done for you.
8 Put in a formula at the bottom of the column to add up the number of percentage errors you have. If the Total is not 12 , check the information you've entered.
9 Insert a chart to display this information. Choose your style and colours. Make sure the chart has labels and a title.
Refer to Building charts and tables - How-tosheet.
10 Describe the overall pattern of the data (shape, center, spread), and any deviations from the pattern (outliers). If necessary, use the framework provided above.

